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Africast-Time Series
Analysis & Forecasting
Using R
8. ARIMA models

https://workshop.f4sg.org/africast/
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ARIMA models
AR: autoregressive (lagged observations as inputs)
I: integrated (differencing to make series stationary)

MA: moving average (lagged errors as inputs)

An ARIMA model is rarely interpretable in terms of visible
data structures like trend and seasonality. But it can capture
a huge range of time series patterns.
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Stationarity
Definition
If {𝑦𝑡} is a stationary time series, then for all 𝑠, the
distribution of (𝑦𝑡, … , 𝑦𝑡+𝑠) does not depend on 𝑡.

A stationary series is:

roughly horizontal
constant variance
no patterns predictable in the long-term
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Stationary?

gafa_stock |>
filter(Symbol == "GOOG", year(Date) == 2018) |>
autoplot(Close) +
labs(y = "Google closing stock price ($US)")
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Stationary?

gafa_stock |>
filter(Symbol == "GOOG", year(Date) == 2018) |>
autoplot(difference(Close)) +
labs(y = "Daily change in Google closing stock price")
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Differencing

Differencing helps to stabilize the mean.
The differenced series is the change between each observation
in the original series.
Occasionally the differenced data will not appear stationary
and it may be necessary to difference the data a second time.
In practice, it is almost never necessary to go beyond
second-order differences.
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Autoregressive models
Autoregressive (AR) models:

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡,
where 𝜀𝑡 is white noise. A multiple regression with lagged
values of 𝑦𝑡 as predictors.
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Cyclic behaviour is possible when 𝑝 ≥ 2. 9



Moving Average (MA) models
Moving Average (MA) models:

𝑦𝑡 = 𝑐 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞,
where 𝜀𝑡 is white noise. A multiple regression with lagged
errors as predictors. Don’t confuse with moving average
smoothing!
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ARIMA models
Autoregressive Moving Average models:

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝
+ 𝜃1𝜀𝑡−1 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡.

Predictors include both lagged values of 𝑦𝑡 and lagged
errors.

Autoregressive Integrated Moving Average models
Combine ARMA model with differencing.
𝑑-differenced series follows an ARMA model.
Need to choose 𝑝, 𝑑, 𝑞 and whether or not to include 𝑐.
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ARIMA models
ARIMA(𝑝, 𝑑, 𝑞) model
AR: 𝑝 = order of the autoregressive part
I: 𝑑 = degree of first differencing involved

MA: 𝑞 = order of the moving average part.

White noise model: ARIMA(0,0,0)
Random walk: ARIMA(0,1,0) with no constant
Random walk with drift: ARIMA(0,1,0) with const.
AR(𝑝): ARIMA(𝑝,0,0)
MA(𝑞): ARIMA(0,0,𝑞)
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Example: National populations

fit <- global_economy |>
model(arima = ARIMA(Population))

fit

# A mable: 263 x 2
# Key: Country [263]

Country arima
<fct> <model>

1 Afghanistan <ARIMA(4,2,1)>
2 Albania <ARIMA(0,2,2)>
3 Algeria <ARIMA(2,2,2)>
4 American Samoa <ARIMA(2,2,2)>
5 Andorra <ARIMA(2,1,2) w/ drift>
6 Angola <ARIMA(4,2,1)>
7 Antigua and Barbuda <ARIMA(2,1,2) w/ drift>
8 Arab World <ARIMA(0,2,1)>
9 Argentina <ARIMA(2,2,2)>

10 Armenia <ARIMA(3,2,0)>
# i 253 more rows
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Example: National populations

fit |>
filter(Country == "Australia") |>
report()

Series: Population
Model: ARIMA(0,2,1)

Coefficients:
ma1

-0.661
s.e. 0.107

sigma^2 estimated as 4.063e+09: log likelihood=-699
AIC=1401 AICc=1402 BIC=1405
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𝑦𝑡 = 2𝑦𝑡−1 − 𝑦𝑡−2 − 0.7𝜀𝑡−1 + 𝜀𝑡
𝜀𝑡 ∼ NID(0, 4 × 109)



Understanding ARIMA models

If 𝑐 = 0 and 𝑑 = 0, the long-term forecasts will go to zero.
If 𝑐 = 0 and 𝑑 = 1, the long-term forecasts will go to a
non-zero constant.
If 𝑐 = 0 and 𝑑 = 2, the long-term forecasts will follow a
straight line.
If 𝑐 ≠ 0 and 𝑑 = 0, the long-term forecasts will go to the
mean of the data.
If 𝑐 ≠ 0 and 𝑑 = 1, the long-term forecasts will follow a
straight line.
If 𝑐 ≠ 0 and 𝑑 = 2, the long-term forecasts will follow a
quadratic trend. 15



Understanding ARIMA models
Forecast variance and 𝑑

The higher the value of 𝑑, the more rapidly the prediction
intervals increase in size.
For 𝑑 = 0, the long-term forecast standard deviation will
go to the standard deviation of the historical data.
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Example: National populations

fit |>
forecast(h = 10) |>
filter(Country == "Australia") |>
autoplot(global_economy)
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How does ARIMA() work?
Hyndman and Khandakar (JSS, 2008) algorithm:

Select no. differences 𝑑 via KPSS test.
Select 𝑝, 𝑞 and inclusion of 𝑐 by minimising AICc.
Use stepwise search to traverse model space.

AICc = −2 log(𝐿) + 2(𝑝 + 𝑞 + 𝑘 + 1) [1 + (𝑝 + 𝑞 + 𝑘 + 2)
𝑇 − 𝑝 − 𝑞 − 𝑘 − 2]

where 𝐿 is the maximised likelihood fitted to the differenced
data, 𝑘 = 1 if 𝑐 ≠ 0 and 𝑘 = 0 otherwise.

Note: Can’t compare AICc for different values of 𝑑.
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How does ARIMA() work?

Step1: Select current model (with smallest AICc) from:
ARIMA(2, 𝑑, 2)
ARIMA(0, 𝑑, 0)
ARIMA(1, 𝑑, 0)
ARIMA(0, 𝑑, 1)

Step 2: Consider variations of current model:
vary one of 𝑝, 𝑞, from current model by ±1;
𝑝, 𝑞 both vary from current model by ±1;
Include/exclude 𝑐 from current model.

Model with lowest AICc becomes current model.
Repeat Step 2 until no lower AICc can be found.
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How does ARIMA() work?

0 1 2 3 4 5 6

0

1

2

3

4

5

6

q

p

step

1

20



How does ARIMA() work?

0 1 2 3 4 5 6

0

1

2

3

4

5

6

q

p

step

1

2

21



How does ARIMA() work?

0 1 2 3 4 5 6

0

1

2

3

4

5

6

q

p

step

1

2

3

22



How does ARIMA() work?

0 1 2 3 4 5 6

0

1

2

3

4

5

6

q

p

step

1

2

3

4

23



Outline

1 ARIMA models

2 Seasonal ARIMA models

3 Forecast ensembles

24



Seasonal ARIMA models

ARIMA (𝑝, 𝑑, 𝑞)⏟ (𝑃, 𝐷, 𝑄)𝑚⏟⏟⏟⏟⏟
↑ ↑

Non-seasonal part Seasonal part of
of the model of the model

𝑚 = number of observations per year.
𝑑 first differences, 𝐷 seasonal differences
𝑝 AR lags, 𝑞 MA lags
𝑃 seasonal AR lags, 𝑄 seasonal MA lags

Seasonal and non-seasonal terms combine multiplicatively
25



Cortecosteroid drug sales

h02 <- PBS |>
filter(ATC2 == "H02") |>
summarise(Cost = sum(Cost) / 1e6)
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Cortecosteroid drug sales

h02 |> autoplot(
Cost

)
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Cortecosteroid drug sales

h02 |> autoplot(
log(Cost)
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Cortecosteroid drug sales

h02 |> autoplot(
log(Cost) |> difference(12)

)
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Cortecosteroid drug sales

h02 |> autoplot(
log(Cost) |> difference(12) |> difference(1)

)
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Cortecosteroid drug sales

h02 |>
model(arima = ARIMA(log(Cost))) |>
report()

Series: Cost
Model: ARIMA(2,1,0)(0,1,1)[12]
Transformation: log(Cost)

Coefficients:
ar1 ar2 sma1

-0.8491 -0.4207 -0.6401
s.e. 0.0712 0.0714 0.0694

sigma^2 estimated as 0.004387: log likelihood=245
AIC=-483 AICc=-483 BIC=-470
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Cortecosteroid drug sales

h02 |>
model(arima = ARIMA(log(Cost))) |>
forecast(h = "3 years") |>
autoplot(h02)
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Cortecosteroid drug sales

fit <- h02 |>
model(best = ARIMA(log(Cost),
stepwise = FALSE,
approximation = FALSE,
order_constraint = p + q + P + Q <= 9

))
report(fit)

Series: Cost
Model: ARIMA(4,1,1)(2,1,2)[12]
Transformation: log(Cost)

Coefficients:
ar1 ar2 ar3 ar4 ma1 sar1 sar2 sma1 sma2

-0.0425 0.210 0.202 -0.227 -0.742 0.621 -0.383 -1.202 0.496
s.e. 0.2167 0.181 0.114 0.081 0.207 0.242 0.118 0.249 0.213

sigma^2 estimated as 0.004049: log likelihood=254
AIC=-489 AICc=-487 BIC=-456 33



Cortecosteroid drug sales

fit |>
forecast() |>
autoplot(h02) +
labs(y = "H02 Expenditure ($AUD)", x = "Year")

0.4

0.8

1.2

1.6

1995 Jan 2000 Jan 2005 Jan 2010 Jan
Year

H
0

2
 E

x
p

e
n
d

it
u
re

 (
$

A
U

D
)

level

80

95

34



Outline

1 ARIMA models

2 Seasonal ARIMA models

3 Forecast ensembles

35



Forecast ensembles

train <- tourism |>
filter(year(Quarter) <= 2014)

fit <- train |>
model(
ets = ETS(Trips),
arima = ARIMA(Trips),
snaive = SNAIVE(Trips)

) |>
mutate(mixed = (ets + arima + snaive) / 3)

Ensemble forecast mixed is a simple average of the three fitted
models.
forecast() will produce distributional forecasts taking into
account the correlations between the forecast errors of the
component models.
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Forecast ensembles

fc <- fit |> forecast(h = "3 years")
fc |>
filter(Region == "Snowy Mountains", Purpose == "Holiday") |>
autoplot(tourism, level = NULL)
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