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Regression models

To explain
To forecast

Simple linear regression model(SLR)
Multiple linear regression model (MLR)
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SLR model in thoery

Regression model allows for a linear relationship between
the forecast variable 𝑦 and a single predictor variable 𝑥.

𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 𝜀𝑡.

𝑦𝑡 is the variable we want to predict: the response variable
Each 𝑥𝑡 is numerical and is called a predictor
𝛽0 and 𝛽1 are regression coefficients
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SLR model in practice
In practice, of course, we have a collection of observations but we
do not know the values of the coefficients ̂𝛽0, ̂𝛽1. These need to be
estimated from the data.

𝑦𝑡 = ̂𝛽0 + ̂𝛽1𝑥𝑡.

𝑦𝑡 is the response variable
Each 𝑥𝑡 is a predictor

̂𝛽0 is the estimated intercept
̂𝛽1 is the estimated slope
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What is the best fit
There are many ways that a straight line can be laid on the scatter
Best known criterion is called Ordinary Least Squares(OLS)
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Estimation of the model

That is, we find the values of 𝛽0 and 𝛽1 which minimize
𝑁

∑
𝑖=1

𝑒2
𝑖 =

𝑁
∑
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)2.

This is called least squares estimation because it gives
the least value of the sum of squared errors.
Finding the best estimates of the coefficients is often
called fitting the model to the data.
We refer to the estimated coefficients using the notation

̂𝛽0, ̂𝛽1.
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Example: US consumption expenditure
us_change %>%
gather("Measure", "Change", Consumption, Income) %>%
autoplot(Change) +
ylab("% change") + xlab("Year")
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Example: US consumption expenditure
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Example: US consumption expenditure
fit_cons <- us_change %>%
model(lm = TSLM(Consumption ~ Income))

report(fit_cons)

Series: Consumption
Model: TSLM

Residuals:
Min 1Q Median 3Q Max

-2.408 -0.318 0.026 0.300 1.452

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.5451 0.0557 9.79 < 2e-16 ***
Income 0.2806 0.0474 5.91 1.6e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.603 on 185 degrees of freedom
Multiple R-squared: 0.159, Adjusted R-squared: 0.154
F-statistic: 35 on 1 and 185 DF, p-value: 2e-08 11



Multiple regression

In multiple regression there is one variable to be
forecast and several predictor variables.
The basic concept is that we forecast the time series of
interest 𝑦 assuming that it has a linear relationship with
other time series 𝑥1, 𝑥2, …., 𝑥𝐾
We might forecast daily A&E attendance 𝑦 using
temperature 𝑥1 and GP visits 𝑥2 as predictors.
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How many variable can we add?

You can add as many as you want but be aware of:

Over-fitting
Multicollinearity
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Multiple regression and forecasting
𝑦𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽2𝑥2,𝑡 + ⋯ + 𝛽𝑘𝑥𝑘,𝑡 + 𝜀𝑡.

𝑦𝑡 is the variable we want to predict: the response variable

Each 𝑥𝑗,𝑡 is numerical and is called a predictor. They are
usually assumed to be known for all past and future times.

The coefficients 𝛽1, … , 𝛽𝑘 measure the effect of each predictor
after taking account of the effect of all other predictors in the
model.

That is, the coefficients measure the marginal effects.

𝜀𝑡 is a white noise error term
14



Estimation of the model

We find the values of ̂𝛽0, … , ̂𝛽𝑘 which minimize

𝑁
∑
𝑖=1

𝑒2
𝑖 =

𝑁
∑
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥1,𝑖 − ⋯ − 𝛽𝑘𝑥𝑘,𝑖)2.

This is called least squares estimation because it gives
the least value of the sum of squared errors
Finding the best estimates of the coefficients is often
called fitting the model to the data
We refer to the estimated coefficients using the notation

̂𝛽0, … , ̂𝛽𝑘. 15



Useful predictors in linear regression

Linear trend
𝑥𝑡 = 𝑡

𝑡 = 1, 2, … , 𝑇
Strong assumption that trend will continue.
use special function trend()

Seasonality

Seasonality will be considered based on the interval of
index
use special function season()
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Example: US consumption expenditure
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Example: US consumption expenditure
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Example: US consumption expenditure
fit_consMR <- us_change %>%
model(lm = TSLM(Consumption ~ Income + Production + Unemployment + Savings))

report(fit_consMR)

Series: Consumption
Model: TSLM

Residuals:
Min 1Q Median 3Q Max

-0.883 -0.176 -0.037 0.153 1.206

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.26729 0.03721 7.18 1.7e-11 ***
Income 0.71448 0.04219 16.93 < 2e-16 ***
Production 0.04589 0.02588 1.77 0.078 .
Unemployment -0.20477 0.10550 -1.94 0.054 .
Savings -0.04527 0.00278 -16.29 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.329 on 182 degrees of freedom
Multiple R-squared: 0.754, Adjusted R-squared: 0.749
F-statistic: 139 on 4 and 182 DF, p-value: <2e-16 19



Example: US consumption expenditure
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Example: US consumption expenditure
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Example: US consumption expenditure
augment(fit_consMR) %>%
gg_tsdisplay(.resid, plot_type="hist")
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Multiple regression and forecasting

For forecasting purposes, we require the following
assumptions:

𝜀𝑡 are uncorrelated and zero mean

𝜀𝑡 are uncorrelated with each 𝑥𝑗,𝑡.

It is useful to also have 𝜀𝑡 ∼ N(0, 𝜎2) when producing
prediction intervals or doing statistical tests.
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Residual diagnostics

There are a series of plots that should be produced in order
to check different aspects of the fitted model and the
underlying assumptions.

1 check if residuals are uncorrelated using ACF
2 Check if residuals are normally distributed
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Residual scatterplots

Useful for spotting outliers and whether the linear model
was appropriate.

Scatterplot of residuals 𝜀𝑡 against each predictor 𝑥𝑗,𝑡.

Scatterplot residuals against the fitted values ̂𝑦𝑡

Expect to see scatterplots resembling a horizontal band
with no values too far from the band and no patterns
such as curvature or increasing spread.
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Example: US consumption expenditure
df <- left_join(us_change, residuals(fit_consMR), by = "Time")
p1 <- ggplot(df, aes(x=Income, y=.resid)) +
geom_point() + ylab("Residuals")

p2 <- ggplot(df, aes(x=Production, y=.resid)) +
geom_point() + ylab("Residuals")

p3 <- ggplot(df, aes(x=Savings, y=.resid)) +
geom_point() + ylab("Residuals")

p4 <- ggplot(df, aes(x=Unemployment, y=.resid)) +
geom_point() + ylab("Residuals")
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Residual patterns

If a plot of the residuals vs any predictor in the model
shows a pattern, then the relationship is non-linear.

If a plot of the residuals vs any predictor not in the
model shows a pattern, then the predictor should be
added to the model.

If a plot of the residuals vs fitted values shows a pattern,
then there is heteroscedasticity in the errors. (Could try
a transformation.)
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Comparing regression models

Computer output for regression will always give the 𝑅2 value.
This is a useful summary of the model.

It is equal to the square of the correlation between 𝑦 and
̂𝑦.
It is often called the “coefficient of determination’ ’.

It can also be calculated as follows: 𝑅2 = ∑( ̂𝑦𝑡− ̄𝑦)2

∑(𝑦𝑡− ̄𝑦)2

It is the proportion of variance accounted for (explained)
by the predictors.
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Comparing regression models
However …

𝑅2 does not allow for degrees of freedom.

Adding any variable tends to increase the value of 𝑅2, even if that
variable is irrelevant.

To overcome this problem, we can use adjusted 𝑅2:

�̄�2 = 1 − (1 − 𝑅2) 𝑇 − 1
𝑇 − 𝑘 − 1

where 𝑘 = no. predictors and 𝑇 = no. observations.

Maximizing �̄�2 is equivalent to minimizing �̂�2.

�̂�2 = 1
𝑇 − 𝑘 − 1

𝑇
∑
𝑡=1

𝜀2
𝑡
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Cross-validation
1 Remove observation 𝑡 from the data set, and fit the
model using the remaining data. Then compute the error
for the omitted observation

2 Repeat step 1 for 𝑡 = 1, ..., 𝑇
3 Compute the MSE from errors obtained in 1. We shall call
this the CV
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Akaike’s Information Criterion

AIC = −2 log(𝐿) + 2(𝑘 + 2)

where 𝐿 is the likelihood and 𝑘 is the number of predictors in
the model.

This is a penalized likelihood approach.
Minimizing the AIC gives the best model for prediction.
AIC penalizes terms more heavily than �̄�2.
Minimizing the AIC is asymptotically equivalent to
minimizing MSE via leave-one-out cross-validation.
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Corrected AIC

For small values of 𝑇 , the AIC tends to select too many
predictors, and so a bias-corrected version of the AIC has
been developed.

AICC = AIC+ 2(𝑘 + 2)(𝑘 + 3)
𝑇 − 𝑘 − 3

As with the AIC, the AICC should be minimized.
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Comparing regression models
glance(fit_consMR) %>%
select(r_squared, adj_r_squared, AIC, AICc, CV)

# A tibble: 1 x 5
r_squared adj_r_squared AIC AICc CV

<dbl> <dbl> <dbl> <dbl> <dbl>
1 0.754 0.749 -409. -409. 0.116
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Choosing regression variables

Best subsets regression

Fit all possible regression models using one or more of
the predictors.

Choose the best model based on one of the measures of
predictive ability (CV, AIC, AICc).
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Choosing regression variables

Backwards stepwise regression

Start with a model containing all variables.
Try subtracting one variable at a time. Keep the model if
it has lower CV or AICc.
Iterate until no further improvement.
You can also do forward stepwise
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Ex-ante versus ex-post forecasts

Ex ante forecasts are made using only information
available in advance.

▶ require forecasts of predictors
Ex post forecasts are made using later information on
the predictors.

▶ useful for studying behaviour of forecasting models.
trend, seasonal and calendar variables are all known in
advance, so these don’t need to be forecast.
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Scenario based forecasting

Assumes possible scenarios for the predictor variables
Prediction intervals for scenario based forecasts do not
include the uncertainty associated with the future values
of the predictor variables.
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Building a predictive regression model

If getting forecasts of predictors is difficult, you can use
lagged predictors instead.

𝑏𝑒𝑡𝑎0 + 𝛽1𝑥1,𝑡−ℎ + ⋯ + 𝛽𝑘𝑥𝑘,𝑡−ℎ + 𝜀𝑡.

A different model for each forecast horizon ℎ.
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US Consumption
fit_consBest <- us_change %>%
model(
TSLM(Consumption ~ Income + Savings + Unemployment)

)

down_future <- new_data(us_change, 4) %>%
mutate(Income = -1, Savings = -0.5, Unemployment = 0)

fc_down <- forecast(fit_consBest, new_data = down_future)

up_future <- new_data(us_change, 4) %>%
mutate(Income = 1, Savings = 0.5, Unemployment = 0)

fc_up <- forecast(fit_consBest, new_data = up_future)

42



US Consumption
us_change %>% autoplot(Consumption) +
ylab("% change in US consumption") +
autolayer(fc_up, series = "increase") +
autolayer(fc_down, series = "decrease") +
guides(colour = guide_legend(title = "Scenario"))
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Correlation does not imply causation

Check out https://www.tylervigen.com/spurious-correlations

45
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Correlation is not causation

When 𝑥 is useful for predicting 𝑦, it is not necessarily
causing 𝑦.
e.g., predict number of drownings 𝑦 using number of
ice-creams sold 𝑥.
Correlations are useful for forecasting, even when there
is no causality.

Better models usually involve causal relationships (e.g.,
temperature 𝑥 and people 𝑧 to predict drownings 𝑦).
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Multicollinearity

In regression analysis, multicollinearity occurs when:

Two predictors are highly correlated (i.e., the correlation
between them is close to ±1).
A linear combination of some of the predictors is highly
correlated with another predictor.
A linear combination of one subset of predictors is
highly correlated with a linear combination of another
subset of predictors.
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Multicollinearity

If multicollinearity exists…

the numerical estimates of coefficients may be wrong
(worse in Excel than in a statistics package)
don’t rely on the 𝑝-values to determine significance.
there is no problem with model predictions provided the
predictors used for forecasting are within the range used
for fitting.
omitting variables can help.
combining variables can help.
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Outliers and influential observations

Things to watch for

Outliers: observations that produce large residuals.
Influential observations: removing them would markedly
change the coefficients. (Often outliers in the 𝑥 variable).
Lurking variable: a predictor not included in the
regression but which has an important effect on the
response.
Points should not normally be removed without a good
explanation of why they are different.
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Modern regression models

Suppose instead of 3 regressors we had 44.
▶ For example, 44 predictors leads to 18 trillion possible models!

Stepwise regression cannot solve this problem due to
the number of variables.
We need to use the family of Lasso models: lasso, ridge,
elastic net
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Dummy variables

52

If a categorical variable
takes only two values
(e.g., ‘Yes’ or ‘No’), then an
equivalent numerical
variable can be
constructed taking value
1 if yes and 0 if no. This is
called a dummy variable.



Dummy variables

53

If there are more than
two categories, then
the variable can be
coded using several
dummy variables
(one fewer than the
total number of
categories).



Beware of the dummy variable trap!

Using one dummy for each category gives too many
dummy variables!

The regression will then be singular and inestimable.

Either omit the constant, or omit the dummy for one
category.

The coefficients of the dummies are relative to the
omitted category.
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Uses of dummy variables
Seasonal dummies

For quarterly data: use 3 dummies
For monthly data: use 11 dummies
For daily data: use 6 dummies

Outliers

If there is an outlier, you can use a dummy variable to remove
its effect.

Public holidays

For daily data: if it is a public holiday, dummy=1, otherwise
dummy=0.
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Intervention variables
Spikes

Equivalent to a dummy variable for handling an outlier.

Steps

Variable takes value 0 before the intervention and 1 afterwards.

Change of slope

Variables take values 0 before the intervention and values
{1, 2, 3, … } afterwards.
this could be also handled using trend()
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Include special event using dummies

Christmas Eve: if Christmas Eve, 𝑣𝑡 = 1, 𝑣𝑡 = 0 otherwise
New year’s Day: if New year’s Day, 𝑣𝑡 = 1, 𝑣𝑡 = 0
otherwise.
and more: Ramadan and Chinese new year, school
holiday, etc
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Interactions

For example, sometimes the effect of a particular event might
be different if it is on a weekend or a week day or its effect
might be different in each shift:

you need to introduce an interaction variable
you can use a new dummy as : v1*v2
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Lagged predictors

The model include present and past values of predictor:
𝑥𝑡, 𝑥𝑡−1, 𝑥𝑡−2, … .

𝑦𝑡 = 𝑎 + 𝛽0𝑥𝑡 + 𝛽1𝑥𝑡−1 + ⋯ + 𝛽𝑘𝑥𝑡−𝑘 + 𝜀𝑡

𝑥 can influence 𝑦, but 𝑦 is not allowed to influence 𝑥.
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Lagged predictors

Lagged values of a predictor:
▶ Create new variables by shifting the existing variable
backwards

Example: 𝑥 is advertising which has a delayed effect

𝑥1 = advertising for previous month;
𝑥2 = advertising for two months previously;

⋮
𝑥𝑚 = advertising for 𝑚 months previously.
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Example: Insurance quotes and TV adverts
insurance

# A tsibble: 40 x 3 [1M]
Month Quotes TVadverts
<mth> <dbl> <dbl>

1 2002 Jan 13.0 7.21
2 2002 Feb 15.4 9.44
3 2002 Mar 13.2 7.53
4 2002 Apr 13.0 7.21
5 2002 May 15.4 9.44
6 2002 Jun 11.7 6.42
7 2002 Jul 10.1 5.81
8 2002 Aug 10.8 6.20
9 2002 Sep 13.3 7.59

10 2002 Oct 14.6 8.00
# i 30 more rows 61



Example: Insurance quotes and TV adverts
Q

uotes
TVadverts

2002 Jan 2003 Jan 2004 Jan 2005 Jan

8

10

12

14

16

18

6

7

8

9

10

11

Year

Insurance advertising and quotations

62



Example: Insurance quotes and TV adverts
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Example: Insurance quotes and TV adverts
fit <- insurance |>
# Restrict data so models use same fitting period
mutate(Quotes = c(NA, NA, NA, Quotes[4:40])) |>
model(
ARIMA(Quotes ~ pdq(d = 0) + TVadverts),
ARIMA(Quotes ~ pdq(d = 0) + TVadverts +

lag(TVadverts)),
ARIMA(Quotes ~ pdq(d = 0) + TVadverts +

lag(TVadverts) +
lag(TVadverts, 2)),

ARIMA(Quotes ~ pdq(d = 0) + TVadverts +
lag(TVadverts) +
lag(TVadverts, 2) +
lag(TVadverts, 3))

)
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Example: Insurance quotes and TV adverts
glance(fit)

Lag order sigma2 log_lik AIC AICc BIC

0 0.265 -28.3 66.6 68.3 75.0
1 0.209 -24.0 58.1 59.9 66.5
2 0.215 -24.0 60.0 62.6 70.2
3 0.206 -22.2 60.3 65.0 73.8
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Example: Insurance quotes and TV adverts
# Re-fit to all data
fit <- insurance |>
model(ARIMA(Quotes ~ TVadverts + lag(TVadverts) + pdq(d = 0)))

report(fit)

Series: Quotes
Model: LM w/ ARIMA(1,0,2) errors

Coefficients:
ar1 ma1 ma2 TVadverts lag(TVadverts) intercept

0.512 0.917 0.459 1.2527 0.1464 2.16
s.e. 0.185 0.205 0.190 0.0588 0.0531 0.86

sigma^2 estimated as 0.2166: log likelihood=-23.9
AIC=61.9 AICc=65.4 BIC=73.7

𝑦𝑡 = 2.16 + 1.25𝑥𝑡 + 0.15𝑥𝑡−1 + 𝜂𝑡,
𝜂𝑡 = 0.512𝜂𝑡−1 + 𝜀𝑡 + 0.92𝜀𝑡−1 + 0.46𝜀𝑡−2.
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Example: Insurance quotes and TV adverts
# Re-fit to all data
fit <- insurance |>
model(ARIMA(Quotes ~ TVadverts + lag(TVadverts) + pdq(d = 0)))

report(fit)

Series: Quotes
Model: LM w/ ARIMA(1,0,2) errors

Coefficients:
ar1 ma1 ma2 TVadverts lag(TVadverts) intercept

0.512 0.917 0.459 1.2527 0.1464 2.16
s.e. 0.185 0.205 0.190 0.0588 0.0531 0.86

sigma^2 estimated as 0.2166: log likelihood=-23.9
AIC=61.9 AICc=65.4 BIC=73.7

𝑦𝑡 = 2.16 + 1.25𝑥𝑡 + 0.15𝑥𝑡−1 + 𝜂𝑡,
𝜂𝑡 = 0.512𝜂𝑡−1 + 𝜀𝑡 + 0.92𝜀𝑡−1 + 0.46𝜀𝑡−2. 66



Example: Insurance quotes and TV adverts
advert_a <- new_data(insurance, 20) |>
mutate(TVadverts = 10)

forecast(fit, advert_a) |> autoplot(insurance)
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Example: Insurance quotes and TV adverts
advert_b <- new_data(insurance, 20) |>
mutate(TVadverts = 8)

forecast(fit, advert_b) |> autoplot(insurance)
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Example: Insurance quotes and TV adverts
advert_c <- new_data(insurance, 20) |>
mutate(TVadverts = 6)

forecast(fit, advert_c) |> autoplot(insurance)
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Lead predictors

Sometimes a change in the predictor 𝑥𝑡 that will happen in
the future will affect the value of 𝑦𝑡 in the past. We say 𝑥𝑡 is a
leading indicator.

Lead values of a predictor:
▶ Create new variables by shifting the existing variable forwards

𝑦𝑡 = sales, 𝑥𝑡 = tax policy announcement
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