Africast-Time Series

Outline

1 Transforming time series
2 Adjusting time series
3 Time series decompositions
4 Multiple seasonality
5 The ABS stuff-up

Outline

1 Transforming time series
2 Adjusting time series
3 Time series decompositions
4 Multiple seasonality
5 The ABS stuff-up

Variance stabilization

If the data show different variation at different levels of the series, then a transformation can be useful.

Variance stabilization

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_{1}, \ldots, y_{n} and transformed observations as w_{1}, \ldots, w_{n}.

Variance stabilization

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_{1}, \ldots, y_{n} and transformed observations as w_{1}, \ldots, w_{n}.

Mathematical transformations for stabilizing variation

Square root $w_{t}=\sqrt{y_{t}}$
Cube root $\quad w_{t}=\sqrt[3]{y_{t}}$
Increasing
Logarithm $\quad w_{t}=\log \left(y_{t}\right) \quad$ strength

Variance stabilization

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_{1}, \ldots, y_{n} and transformed observations as w_{1}, \ldots, w_{n}.

Mathematical transformations for stabilizing variation

Square root $w_{t}=\sqrt{y_{t}}$
Cube root $\quad w_{t}=\sqrt[3]{y_{t}}$
Increasing
Logarithm $\quad w_{t}=\log \left(y_{t}\right) \quad$ strength
Logarithms, in particular, are useful because they are more interpretable: changes in a log value are relative (percent) changes

Variance stabilization

```
food <- aus_retail |>
    filter(Industry == "Food retailing") |>
    summarise(Turnover = sum(Turnover))
```


Variance stabilization

```
food |> autoplot(sqrt(Turnover)) +
    labs(y = "Square root turnover")
```


Variance stabilization

```
food |> autoplot(Turnover^(1 / 3)) +
    labs(y = "Cube root turnover")
```


Variance stabilization

```
food |> autoplot(log(Turnover)) +
    labs(y = "Log turnover")
```


Variance stabilization

```
food |> autoplot(-1 / Turnover) +
    labs(y = "Inverse turnover")
```


Box-Cox transformations

Each of these transformations is close to a member of the family of Box-Cox transformations:

$$
w_{t}= \begin{cases}\log \left(y_{t}\right), & \lambda=0 \\ \left(\operatorname{sign}\left(y_{t}\right)\left|y_{t}\right|^{\lambda}-1\right) / \lambda, & \lambda \neq 0 .\end{cases}
$$

Box-Cox transformations

Each of these transformations is close to a member of the family of Box-Cox transformations:

$$
w_{t}= \begin{cases}\log \left(y_{t}\right), & \lambda=0 \\ \left(\operatorname{sign}\left(y_{t}\right)\left|y_{t}\right|^{\lambda}-1\right) / \lambda, & \lambda \neq 0 .\end{cases}
$$

■ Actually the Bickel-Doksum transformation (allowing for $y_{t}<0$)
■ $\lambda=1$: (No substantive transformation)
■ $\lambda=\frac{1}{2}$: (Square root plus linear transformation)
■ $\lambda=0$: (Natural logarithm)

- $\lambda=-1$: (Inverse plus 1)

Box-Cox transformations

food |>
features(Turnover, features = guerrero)
\# A tibble: 1×1
lambda_guerrero
<dbl>
10.0895

```
food |>
    features(Turnover, features = guerrero)
```

\# A tibble: 1×1
lambda_guerrero <dbl>

1

$$
0.0895
$$

- This attempts to balance the seasonal fluctuations and random variation across the series.
■ Always check the results.
- A low value of λ can give extremely large prediction intervals.

Box-Cox transformations

```
food |> autoplot(box_cox(Turnover, 0.0895)) +
    labs(y = "Box-Cox transformed turnover")
```


Transformations

■ Often no transformation needed.

- Simple transformations are easier to explain and work well enough.
- Transformations can have very large effect on PI.
- If some data are zero or negative, then use $\lambda>0$.
- $\log 1 \mathrm{p}()$ can also be useful for data with zeros.

■ Choosing logs is a simple way to force forecasts to be positive

- Transformations must be reversed to obtain forecasts on the original scale. (Handled automatically by fable.)

Outline

1 Transforming time series
2 Adjusting time series
3 Time series decompositions
4 Multiple seasonality
5 The ABS stuff-up

Per capita adjustments

```
global_economy |>
    filter(Country == "Australia") |>
    autoplot(GDP)
```


Per capita adjustments

```
global_economy |>
    filter(Country == "Australia") |>
    autoplot(GDP / Population)
```


Inflation adjustments

```
print_retail <- aus_retail |>
    filter(Industry == "Newspaper and book retailing") |>
    group_by(Industry) |>
    index_by(Year = year(Month)) |>
    summarise(Turnover = sum(Turnover))
aus_economy <- filter(global_economy, Country == "Australia")
print_retail |>
    left_join(aus_economy, by = "Year") |>
    mutate(Adj_turnover = Turnover / CPI) |>
    pivot_longer(c(Turnover, Adj_turnover),
        names_to = "Type", values_to = "Turnover"
    ) |>
    ggplot(aes(x = Year, y = Turnover)) +
    geom_line() +
    facet_grid(vars(Type), scales = "free_y") +
    labs(x = "Years", y = NULL,
        title = "Turnover: Australian print media industry")
```


Inflation adjustments

Outline

1 Transforming time series
2 Adjusting time series
3 Time series decompositions
4 Multiple seasonality
5 The ABS stuff-up

Time series decomposition

Trend-Cycle aperiodic changes in level over time.
Seasonal (almost) periodic changes in level due to seasonal factors (e.g., the quarter of the year, the month, or day of the week).

Additive decomposition

$$
y_{t}=S_{t}+T_{t}+R_{t}
$$

where $y_{t}=$ data at period t
$T_{t}=$ trend-cycle component at period t
$S_{t}=$ seasonal component at period t
$R_{t}=$ remainder component at period t

STL decomposition

■ STL: "Seasonal and Trend decomposition using Loess"

- Very versatile and robust.

■ Seasonal component allowed to change over time, and rate of change controlled by user.

- Smoothness of trend-cycle also controlled by user.
- Optionally robust to outliers
- No trading day or calendar adjustments.

■ Only additive.

- Take logs to get multiplicative decomposition.

■ Use Box-Cox transformations to get other decompositions.

US Retail Employment

```
us_retail_employment <- us_employment |>
    filter(year(Month) >= 1990, Title == "Retail Trade") |>
    select(-Series_ID)
us_retail_employment
```

\# A tsibble: 357×3 [1M]
Month Title Employed
<mth> <chr> <dbl>
11990 Jan Retail Trade 13256.
21990 Feb Retail Trade 12966.
31990 Mar Retail Trade 12938.
41990 Apr Retail Trade 13012.
51990 May Retail Trade 13108.
61990 Jun Retail Trade 13183.
71990 Jul Retail Trade 13170.
81990 Aug Retail Trade 13160.
91990 Sep Retail Trade 13113.

US Retail Employment

```
us_retail_employment |>
    autoplot(Employed) +
    labs(y = "Persons (thousands)", title = "Total employment in US retail")
```

Total employment in US retail

US Retail Employment

```
dcmp <- us_retail_employment |>
    model(stl = STL(Employed))
dcmp
```

\# A mable: 1×1
stl
<model>
1 <STL>

US Retail Employment

```
components(dcmp)
```


US Retail Employment

```
components(dcmp) |> autoplot()
```


STL decomposition

Employed $=$ trend + season＿year + remainder

16000 －

US Retail Employment

```
us_retail_employment | >
    autoplot(Employed, color = "gray") +
    autolayer(components(dcmp), trend, color = "#D55E00") +
    labs(y = "Persons (thousands)", title = "Total employment in US retail")
```

Total employment in US retail

US Retail Employment

```
components(dcmp) |> gg_subseries(season_year)
```


Seasonal adjustment

■ Useful by-product of decomposition: an easy way to calculate seasonally adjusted data.

- Additive decomposition: seasonally adjusted data given by

$$
y_{t}-S_{t}=T_{t}+R_{t}
$$

■ Multiplicative decomposition: seasonally adjusted data given by

$$
y_{t} / S_{t}=T_{t} \times R_{t}
$$

US Retail Employment

```
us_retail_employment |>
    autoplot(Employed, color = "gray") +
    autolayer(components(dcmp), season_adjust, color = "#0072B2") +
    labs(y = "Persons (thousands)", title = "Total employment in US retail")
```

Total employment in US retail

Seasonal adjustment

■ We use estimates of S based on past values to seasonally adjust a current value.
■ Seasonally adjusted series reflect remainders as well as trend. Therefore they are not "smooth" and "downturns" or "upturns" can be misleading.
■ It is better to use the trend-cycle component to look for turning points.

STL decomposition

STL decomposition of US retail employment season(window=05)

STL decomposition

```
us_retail_employment |>
    model(STL(Employed ~ trend(window = 15) + season(window = "periodic"),
        robust = TRUE
    )) |>
    components()
```

■ trend(window = ?) controls wiggliness of trend component.

- season (window = ?) controls variation on seasonal component.
- season(window = 'periodic') is equivalent to an infinite window.

STL decomposition

```
us_retail_employment |>
    model(STL(Employed)) |>
    components() |>
    autoplot()
```


STL decomposition

Employed $=$ trend + season_year + remainder

STL decomposition

```
us_retail_employment |>
    model(STL(Employed)) |>
    components() |>
    autoplot()
```


STL decomposition

Employed $=$ trend + season_year + remainder

16000 $=$
15000-1400013000 -

STL() chooses season(window=13) by default
Can include transformations.

STL decomposition

■ Algorithm that updates trend and seasonal components iteratively.

- Starts with $\hat{T}_{t}=0$

■ Uses a mixture of loess and moving averages to successively refine the trend and seasonal estimates.

- trend window controls loess bandwidth on deasonalised values.
- season window controls loess bandwidth on detrended subseries.
■ Robustness weights based on remainder.
■ Default season: window = 13
- Default trend:

Australian holidays

```
holidays |> autoplot(Trips) +
    labs(y = "thousands of trips", x = "Year",
        title = "Australian domestic holiday nights")
```

Australian domestic holiday nights

State

- ACT
- NSW
- NT
- QLD
- SA
- TAS
- VIC
- WA

Australian holidays

```
holidays |>
model(stl = STL(Trips)) |>
components() |>
autoplot()
```

STL decomposition
Trips = trend + season_year + remainder

4000
3000
2000
1000
300
300
2000 1000 -

State/.model

- ACT/stl
- NSW/stl
- NT/stl
- QLD/stl
- SA/stl
- TAS/stl
- VIC/stl
- WA/stl

Holidays decomposition

```
dcmp <- holidays |>
    model(stl = STL(Trips)) |>
    components()
dcmp
```

\# A dable: 640 x 8 [1Q]
\# Key: State, .model [8]
\# : Trips = trend + season_year + remainder
State .model Quarter Trips trend season_year remainder season_adjust
<chr> <chr> <qtr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ACT stl 1998 Q1 196. 172. -8.48 32.6205.
2 ACT stl 1998 Q2 127. 157. 10.3 -40.6 116.
3 ACT stl 1998 Q3 111. 142. -16.8 -14.5 128.
4 ACT stl 1998 Q4 170. 130. 14.6 25.6 156.
5 ACT stl 1999 Q1 108. 135. $-8.63-18.3 \quad 116$.
6 ACT stl 1999 Q2 125. 148. 11.0 -34.6 114.
7 ACT stl 1999 Q3 178. 166. $-16.0 \quad 28.3 \quad 194$.
8 ACT stl 1999 Q4 218. 177. $13.2 \quad 27.5 \quad 204$.

Holidays decomposition

dcmp |> gg_subseries(season_year)

Holidays decomposition

```
autoplot(dcmp, trend, scale_bars = FALSE) +
    autolayer(holidays, alpha = 0.4)
```

STL decomposition trend

- ACT
- ACT/stl
- NSW
- NSW/stl
- NT
- NT/stl
- QLD
- QLD/stl
- SA
- SA/stl
- TAS
- TAS/stl
- VIC
- VIC/stl
- WA

Outline

1 Transforming time series
2 Adjusting time series
3 Time series decompositions
4 Multiple seasonality
5 The ABS stuff-up

Multiple seasonality

STL decomposition

Demand = trend + season_year + season_week + season_day + season_hour + remainder

```
vic_elec |>
```

vic_elec |>
model(STL(Demand)) |>
model(STL(Demand)) |>
components() |>
components() |>
autoplot()

```
    autoplot()
```


Outline

1 Transforming time series
2 Adjusting time series
3 Time series decompositions
4 Multiple seasonality
5 The ABS stuff-up

The ABS stuff-up

NEWS $\mathbb{M} \times$
 LOCATION: - Clayton, Vic Change $=$
 ก1 Just In Australia World Business Sport Analysis \& Opinion Fact Check Programs

BREAKING NEWS
Police arrest man in connection with stabbing death of 17-year-old Masa Vukotic in M
©Print Email FFacebook Twitter © More

Treasurer Joe Hockey calls for answers over Australian Bureau of Statistics jobs data

By Michael Vincent and Simon Frazer
Updated 9 Oct 2014. 12:17pm

Federal Treasurer Joe Hockey says he wants

 answers to the problems the Australian Bureau of Statistics (ABS) has had with unemployment figures.Mr Hockey, who is in the US to discuss Australia's G20 agenda, said last month's unemployment figures were "extraordinary".

The rate was 6.1 per cent after jumping to a 12year high of 6.4 per cent the previous month.

The ABS has now taken the rare step of abandoning seasonal adjustment for its latest employment data.

РНото: Joe Hockey says he is unhappy with the volatility of ABS unemployment figures. (AAP: Alan Porritt)

RELATED STORY: ABS abandons seasonal adjustment for

The ABS stuff-up

ABS abandons seasonal adjustment for latest jobs data

By business reporter Michael Janda Updated 8 Oct 2014, 4:19pm

The Australian Bureau of Statistics is taking the rare step of abandoning seasonal adjustment for its latest employment data.

The ABS uses seasonal adjustment, based on historical experience, to account for the normal variation between hiring and firing patterns between different months.

However, after a winter where the seasonally adjusted unemployment rate swung wildly from 6.1 o 6.4 and back to 6.1 per cent, the bureau released a statement saying it will not adjust the original figure for September for seasonal factors.

It will also reset the seasonal adjustment for July and August to one, meaning that these months will

VIDEO: Westpac chief economist Bill Evans discusses the ABS jobs data changes (ABC Nows)
does the ABS
RELATED STORY: Jobs increase record sees unemployment slashed
RELATED STORY: Unemployment surges to 12-year high at 6.4
pc
MAP: Australia

The ABS stuff-up

ABS jobs and unemployment figures key questions answered by an expert

A professor of statistics at Monash University explains exactly what is seasonal adjustment, why it matters and what went wrong in the July and August figures

The Australian Bureau of Statistics has retracted its seasonally adjusted employment data for July and August, which recorded huge swings in the jobless rate. The ABS is also planning to review the methods it uses for seasonal adjustment to ensure its figures are as accurate as possible. Rob Hyndman, a professor of statistics at Monash University and member of the bureau's

The ABS stuff-up

```
employed
# A tsibble: 440 x 4 [1M]
            Time Month Year Employed
    <mth> <ord> <dbl> <dbl>
    1 1978 Feb Feb 1978 5986.
    2 1978 Mar Mar 1978 6041.
    31978 Apr Apr 1978 6054.
    41978 May May 1978 6038.
    5 1978 Jun Jun 1978 6031.
    6 1978 Jul Jul 1978 6036.
    71978 Aug Aug 1978 6005.
    8 1978 Sep Sep 1978 6024.
    9 1978 Oct Oct 1978 6046.
10 1978 Nov Nov 1978 6034.
# i 430 more rows
```


The ABS stuff-up

```
employed |>
    autoplot(Employed) +
    labs(title = "Total employed", y = "Thousands")
```

Total employed

The ABS stuff-up

```
employed |>
    filter(Year >= 2005) |>
    autoplot(Employed) +
    labs(title = "Total employed", y = "Thousands")
```

Total employed

The ABS stuff-up

```
employed |>
    filter(Year >= 2005) |>
    gg_season(Employed, labels = "right") +
    labs(title = "Total employed", y = "Thousands")
```

Total employed

The ABS stuff-up

```
employed |>
    mutate(diff = difference(Employed)) |>
    filter(Month == "Sep") |>
    ggplot(aes(y = diff, x = 1)) +
    geom_boxplot() +
    coord_flip() +
    labs(title = "Sep - Aug: total employed", y = "Thousands") +
    scale_x_continuous(breaks = NULL, labels = NULL)
```

Sep - Aug: total employed

The ABS stuff-up

```
dcmp <- employed |>
    filter(Year >= 2005) |>
    model(stl = STL(Employed ~ season(window = 11), robust = TRUE))
components(dcmp) |> autoplot()
```

STL decomposition
Employed = trend + season_year + remainder

The ABS stuff-up

```
components(dcmp) |>
filter(year(Time) == 2013) |>
gg_season(season_year)
labs(title = "Seasonal component") + guides(colour = "none")
```

Seasonal component

The ABS stuff-up

```
components(dcmp) |>
    as_tsibble() |>
    autoplot(season_adjust)
```


The ABS stuff-up

■ August 2014 employment numbers higher than expected.
■ Supplementary survey usually conducted in August for employed people.
■ Most likely, some employed people were claiming to be unemployed in August to avoid supplementary questions.
■ Supplementary survey not run in 2014, so no motivation to lie about employment.
■ In previous years, seasonal adjustment fixed the problem.

- The ABS has now adopted a new method to avoid the bias.

