
1

Africast-Time Series
Analysis & Forecasting
Using R
10. Residual diagnostics and cross
validation

https://workshop.f4sg.org/africast/

Outline

1 Time series cross-validation

2 Residual diagnostics

3 Recap

2

Outline

1 Time series cross-validation

2 Residual diagnostics

3 Recap

3

Issue with traditional train/test split

4

Time series cross-validation

5

Time series cross-validation

Time series cross-validation
time

Forecast accuracy averaged over test sets.
Also known as “evaluation on a rolling forecasting origin”

6

Time series cross-validation

Time series cross-validation
time

Forecast accuracy averaged over test sets.
Also known as “evaluation on a rolling forecasting origin”

6

Creating the rolling training sets
There are three main rolling types which can be used.

Stretch: extends a growing length window with new data.
Slide: shifts a fixed length window through the data.
Tile: moves a fixed length window without overlap.

Three functions to roll a tsibble: stretch_tsibble(),
slide_tsibble(), and tile_tsibble().

For time series cross-validation, stretching windows are most
commonly used.

7

Time series cross-validation
Stretch with a minimum length of 24, growing by 1 each step.

forecast_horizon <- 12
test <- antidiabetic_drug_sale |>
slice((n()-forecast_horizon+1):n())

train <- antidiabetic_drug_sale |>
slice(1:(n()-forecast_horizon))

drug_sale_tcsv <- train |> slice(1:(n()-forecast_horizon)) |>
stretch_tsibble(.init = 24, .step = 1)

A tsibble: 2,805 x 3 [1M]
Key: .id [55]

Month Cost .id
<mth> <dbl> <int>

1 2000 Jan 12.5 1
2 2000 Feb 7.46 1
3 2000 Mar 8.59 1
4 2000 Apr 8.47 1
i 2,801 more rows

8

Time series cross-validation
Estimate RW w/ drift models for each window.

drug_fit_tr <- drug_sale_tcsv |>
model(snaive=SNAIVE(Cost))

A mable: 55 x 2
Key: .id [55]

.id snaive
<int> <model>

1 1 <SNAIVE>
2 2 <SNAIVE>
3 3 <SNAIVE>
4 4 <SNAIVE>
i 51 more rows

9

Time series cross-validation
Produce 8 step ahead forecasts from all models.

drug_fc_tr <- drug_fit_tr |>
forecast(h=forecast_horizon)

A tsibble: 660 x 6 [1M]
Key: .id, .model [55]

.id .model Month Cost .mean h
<int> <chr> <mth> <dist> <dbl> <int>

1 1 snaive 2002 Jan N(14, 1.7) 14.5 1
2 1 snaive 2002 Feb N(8, 1.7) 8.05 2
3 1 snaive 2002 Mar N(10, 1.7) 10.3 3
4 1 snaive 2002 Apr N(9.8, 1.7) 9.75 4
i 656 more rows

10

Time series cross-validation

Cross-validated
drug_fc_tr |>
accuracy(antidiabetic_drug_sale,

measures = list(point_accuracy_measures,
interval_accuracy_measures,
distribution_accuracy_measures))

A tibble: 1 x 13
.model .type ME RMSE MAE MPE MAPE MASE RMSSE ACF1 winkler percentile CRPS
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 snaive Test 1.48 1.90 1.56 9.09 9.59 1.17 1.20 0.254 9.73 1.12 1.11

11

Outline

1 Time series cross-validation

2 Residual diagnostics

3 Recap

12

Forecasting residuals

Residuals in forecasting: difference between observed value
and its fitted value: 𝑒𝑡 = 𝑦𝑡 − ̂𝑦𝑡|𝑡−1.

Assumptions
1 {𝑒𝑡} uncorrelated. If they aren’t, then information left in

residuals that should be used in computing forecasts.
2 {𝑒𝑡} have mean zero. If they don’t, then forecasts are biased.

Useful properties (for prediction intervals)
3 {𝑒𝑡} have constant variance.
4 {𝑒𝑡} are normally distributed.

13

Forecasting residuals

Residuals in forecasting: difference between observed value
and its fitted value: 𝑒𝑡 = 𝑦𝑡 − ̂𝑦𝑡|𝑡−1.

Assumptions
1 {𝑒𝑡} uncorrelated. If they aren’t, then information left in

residuals that should be used in computing forecasts.
2 {𝑒𝑡} have mean zero. If they don’t, then forecasts are biased.

Useful properties (for prediction intervals)
3 {𝑒𝑡} have constant variance.
4 {𝑒𝑡} are normally distributed.

13

Forecasting residuals

Residuals in forecasting: difference between observed value
and its fitted value: 𝑒𝑡 = 𝑦𝑡 − ̂𝑦𝑡|𝑡−1.

Assumptions
1 {𝑒𝑡} uncorrelated. If they aren’t, then information left in

residuals that should be used in computing forecasts.
2 {𝑒𝑡} have mean zero. If they don’t, then forecasts are biased.

Useful properties (for prediction intervals)
3 {𝑒𝑡} have constant variance.
4 {𝑒𝑡} are normally distributed.

13

Facebook closing stock price

fb_stock <- gafa_stock |>
filter(Symbol == "FB")

fb_stock |> autoplot(Close)

50

100

150

200

2014 2016 2018
Date [!]

C
lo

se

14

Facebook closing stock price

fb_stock <- fb_stock |>
mutate(trading_day = row_number()) |>
update_tsibble(index = trading_day, regular = TRUE)

fit <- fb_stock |> model(NAIVE(Close))
augment(fit)

A tsibble: 1,258 x 7 [1]
Key: Symbol, .model [1]

Symbol .model trading_day Close .fitted .resid .innov
<chr> <chr> <int> <dbl> <dbl> <dbl> <dbl>

1 FB NAIVE(Close) 1 54.7 NA NA NA
2 FB NAIVE(Close) 2 54.6 54.7 -0.150 -0.150
3 FB NAIVE(Close) 3 57.2 54.6 2.64 2.64
4 FB NAIVE(Close) 4 57.9 57.2 0.720 0.720
5 FB NAIVE(Close) 5 58.2 57.9 0.310 0.310
6 FB NAIVE(Close) 6 57.2 58.2 -1.01 -1.01
7 FB NAIVE(Close) 7 57.9 57.2 0.720 0.720
8 FB NAIVE(Close) 8 55.9 57.9 -2.03 -2.03
9 FB NAIVE(Close) 9 57.7 55.9 1.83 1.83

10 FB NAIVE(Close) 10 57.6 57.7 -0.140 -0.140
i 1,248 more rows

15

Facebook closing stock price

augment(fit) |>
ggplot(aes(x = trading_day)) +
geom_line(aes(y = Close, colour = "Data")) +
geom_line(aes(y = .fitted, colour = "Fitted"))

50

100

150

200

0 400 800 1200
trading_day

C
lo
se

colour

Data

Fitted

16

Facebook closing stock price

augment(fit) |>
filter(trading_day > 1100) |>
ggplot(aes(x = trading_day)) +
geom_line(aes(y = Close, colour = "Data")) +
geom_line(aes(y = .fitted, colour = "Fitted"))

125

150

175

200

1100 1150 1200 1250
trading_day

C
lo
se

colour

Data

Fitted

17

Facebook closing stock price

augment(fit) |>
autoplot(.resid) +
labs(x = "Day", y = "", title = "Residuals from naïve method")

-40

-20

0

0 400 800 1200
Day

Residuals from naïve method

18

Facebook closing stock price

augment(fit) |>
ggplot(aes(x = .resid)) +
geom_histogram(bins = 150) +
labs(title = "Histogram of residuals")

0

50

100

150

-40 -20 0
.resid

co
u
n
t

Histogram of residuals

19

Facebook closing stock price

augment(fit) |>
ACF(.resid) |>
autoplot() + labs(title = "ACF of residuals")

-0.06

-0.03

0.00

0.03

0.06

10 20 30
lag [1]

a
cf

ACF of residuals

20

ACF of residuals

We assume that the residuals are white noise
(uncorrelated, mean zero, constant variance). If they
aren’t, then there is information left in the residuals that
should be used in computing forecasts.
So a standard residual diagnostic is to check the ACF of
the residuals of a forecasting method.
We expect these to look like white noise.

21

Combined diagnostic graph

fit |> gg_tsresiduals()

-40

-20

0

0 400 800 1200
trading_day

In
n
o
v
a
ti

o
n
 r

e
si

d
u
a
ls

-0.06

-0.03

0.00

0.03

0.06

10 20 30
lag [1]

a
cf

0

50

100

150

-40 -20 0
.resid

co
u
n
t

22

Ljung-Box test
Test whether whole set of 𝑟𝑘 values is significantly different from zero set.

𝑄 = 𝑇 (𝑇 + 2)
ℓ

∑
𝑘=1

(𝑇 − 𝑘)−1𝑟2
𝑘 where ℓ = max lag and 𝑇 = # observations

If each 𝑟𝑘 close to zero, 𝑄 will be small.
If some 𝑟𝑘 values large (+ or −), 𝑄 will be large.
My preferences: ℎ = 10 for non-seasonal data, ℎ = 2𝑚 for seasonal
data.
If data are WN and 𝑇 large, 𝑄 ∼ 𝜒2 with ℓ degrees of freedom.

23

Ljung-Box test

𝑄 = 𝑇 (𝑇 + 2)
ℓ

∑
𝑘=1

(𝑇 − 𝑘)−1𝑟2
𝑘 where ℓ = max lag and 𝑇 = # observations.

-0.06

-0.03

0.00

0.03

0.06

2.5 5.0 7.5 10.0
lag [1]

a
cf

ACF of residuals

lag = h
augment(fit) |> features(.resid, ljung_box, lag = 10)

A tibble: 1 x 4
Symbol .model lb_stat lb_pvalue
<chr> <chr> <dbl> <dbl>

1 FB NAIVE(Close) 12.1 0.276 24

Outline

1 Time series cross-validation

2 Residual diagnostics

3 Recap

25

Recap
1 First, import your data and prepare them using tsibble function.
2 Visualise and see whether your series contains key patetrns Use

domain knowledge to understand your data and potential driving
factors.

3 Split the data to create a training set, which you will use as an
argument in your forecasting function(s). You can also create a test
set to use later.

4 Create different rolling origins to evaluate forecast accuracy using
time series cross validation

26

Recap
5 Train model to each origin
6 Computer forecast accuracy, use the accuracy() function with the

fable as the first argument and original data as the second.
7 Compare methods using point, prediction interval and distributional

accuracy measure; a smaller error indicates higher accuracy.
8 Forecast using all data for the future using the best method.
9 Use residual diagnostic based on residuals of the best model.

27

	Time series cross-validation
	Residual diagnostics
	Recap

